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Direct numerical simulations of the motion of up to 216 three-dimensional buoy-
ant bubbles in periodic domains are presented. The full Navier–Stokes equations
are solved by a parallelized finite-difference/front-tracking method that allows a de-
formable interface between the bubbles and the suspending fluid and the inclusion
of surface tension. The governing parameters are selected such that the average rise
Reynolds number is about 12–30, depending on the void fraction; deformations
of the bubbles are small. Although the motion of the individual bubbles is unsteady,
the simulations are carried out for a sufficient time that the average behaviour of
the system is well defined. Simulations with different numbers of bubbles are used to
explore the dependence of the statistical quantities on the size of the system. Exam-
ination of the microstructure of the bubbles reveals that the bubbles are dispersed
approximately homogeneously through the flow field and that pairs of bubbles tend to
align horizontally. The dependence of the statistical properties of the flow on the void
fraction is analysed. The dispersion of the bubbles and the fluctuation characteristics,
or ‘pseudo-turbulence’, of the liquid phase are examined in Part 2.

1. Introduction
Bubbly flows have been studied for a long time. Although the dynamics of a

single bubble has attracted considerable attention and is now well understood, many
practical applications require predictions of the behavior of a large number of bubbles.
Examples include boiling flows, bubble columns for diverse chemical processes, air
entrainment at the air/ocean interface, and many others. Engineering predictions of
multiphase flows rely on conservation equations for the averaged properties of the
mixture and closure laws to relate subgrid processes to the averaged behavior of the
system.

For turbulent flows, direct numerical simulations, where the unsteady Navier–
Stokes equations are solved on grids fine enough to fully resolve all flow scales,
have had a major impact on the current understanding of turbulence in single-phase
flows. In two-phase flows, additional complexity arises from the presence of a second
phase with significantly different physical properties. The need for direct numerical
simulations in the study of multiphase flows has been apparent for some time.
However, the challenge of simulating the unsteady motion of moving fluid interfaces
has led investigators to use simplified models. For dispersed flows, where bubbles,
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drops or solid particles of one phase move within another continuous phase, assuming
Stokes flow (Pozrikidis 1993; Loewenberg & Hinch 1996), potential flow (Sangani &
Didwania 1993; Smereka 1993), or point particles (Squires & Eaton 1990; Elghobashi
& Truesdell 1992; Wang & Maxey 1993) are typical examples of such simplifications.
Direct numerical simulations, in which the flow is completely resolved, are very recent.

Esmaeeli & Tryggvason (1996, 1998) used direct numerical simulations to examine
the motion of a number of freely evolving bubbles at low yet finite Reynolds numbers
(around 1–2, depending on volume fraction and dimensionality). The simulations were
done using periodic domains and included up to 324 two-dimensional bubbles and
8 three-dimensional ones. The simulations showed that a regular array is unstable
and that it breaks up through two-bubble interactions of the ‘drafting, kissing, and
tumbling’ type. Although the motion of a regular array at O(1) Reynolds numbers is
fairly similar to Stokes flow, the evolution of the free array differs by the strong two-
bubble interactions. In Esmaeeli & Tryggvason (1999), the evolution was examined
at a higher Reynolds number (around 20–30 for the lowest volume fraction). For the
low Reynolds numbers, the freely evolving array rose faster than the regular one, in
agreement with Stokes flow predictions, but at the higher Reynolds number the freely
evolving array rose slower than the regular one. The effect of the number of bubbles
in each period was examined for the two-dimensional system and it was found that
the rise Reynolds number and the velocity fluctuations in the liquid (the Reynolds
stresses) generally increase with the size of the system. While some aspects of the fully
three-dimensional flows, such as the dependence of the rise velocity on the Reynolds
number, are predicted by results for two-dimensional flows, the structure of the bubble
distribution and the magnitude of the Reynolds stresses are not. For references to
other computations of bubble motions, see Esmaeeli & Tryggvason (1998, 1999).
For solid particles, Glowinski et al. (1999) have performed calculations of up to 504
particles in two dimensions. The results reported here include a much larger number
of bubbles than those presented by Esmaeeli & Tryggvason and were obtained by a
parallel code using the same methodology. This paper focuses on the rise velocity and
the microstructure of the bubbles while Bunner & Tryggvason (2002a), henceforth
referred to as Part 2, focuses on the fluctuations of the bubbles and the liquid.

2. Problem statement and numerical method
We consider the three-dimensional motion of a triply periodic monodisperse array

of buoyant bubbles with equivalent diameter d or radius a, density ρb, viscosity µb,
and uniform surface tension σ in a fluid with density ρf and viscosity µf . The array of
bubbles is repeated periodically in the three spatial directions with periods equal to
L. In addition to the acceleration due to gravity, g, a uniform acceleration is imposed
on the fluid inside and outside the bubbles to compensate for the hydrostatic head,
so that the net momentum flux through the boundaries of the computational domain
is zero. This is explained in more detail in § 2.1.

A single bubble of light fluid rising in an unbounded flow is usually described
by the Eötvös number (sometimes also called Bond number), Eo = ρfgd

2/σ and
the Morton number, M = gµf

4/ρfσ
3 (see Clift, Grace & Weber 1978). For given

fluids, the Eötvös number is a characteristic of the bubble size and the Morton
number is a constant. Instead of the Morton number, we prefer to use the Galileo
or Archimedes number, N = ρ2gd3/µ2 = Eo3/2/M1/2, which is a Reynolds number

squared based on the velocity scale (gd)1/2. In this paper, we choose Eo = 1 and
N = 900 (M = 1.2345× 10−6). This Morton number corresponds to a light machine
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oil at a temperature of about 65 ◦C (µf = 0.0131 N s m−2, ρf = 880 kg m−3, σ =
0.03 N m−1, and g = 9.81 m s−2) and the Eötvös number corresponds to a bubble with
a diameter of about 1.9 mm. For the somewhat more interesting case of an air bubble
in water, the Galileo number is usually much higher, but current computational
capabilities make the study of a three-dimensional system of many bubbles in water
very difficult. The fluids are taken to be free of contaminants in the simulations.
The ratios of the densities and viscosities, ρb/ρf and µb/µf , are two additional
dimensionless parameters. These ratios are very small in most bubbly flows (the
density ratio for air bubbles in water is 1/1000, for example). For computational
reasons discussed in § 2.7, the simulations were performed at a higher value, ρb/ρf =
µb/µf = 1/50. It is shown in § 2.7 that this approximation has a small effect on the
results.

At the initial time, the Nb bubbles are placed inside the periodic cell corresponding
to the computational domain, and arranged in a regular array, which is perturbed
slightly in each direction in a manner described in § 3. The initial configuration of the
bubbles has little effect on the results, as explained in § 3. As they rise, the bubbles
move into the other periodic cells in the vertical direction through buoyancy and in
the horizontal direction through dispersion. The bubbles are not allowed to coalesce,
so that Nb is constant. A fifth dimensionless parameter for this problem is the void
fraction, or volume fraction of the bubbly phase, α = Nbπd

3/6L3. Since both fluids are
assumed to be incompressible, α is constant throughout a simulation. In this paper,
values of α ranging from 2% to 24% are considered, corresponding respectively to
dilute and dense flows. The number of bubbles, Nb, is an additional parameter, and its
effect is studied by looking at systems with Nb = 1, 2, 4, 12, 27, 91 and 216 at α = 6%
and with Nb = 1, 27, and 54 at α = 12%. It is found that the rise velocity depends
only weakly on Nb when Nb > 12, while the velocity fluctuations and dispersion
characteristics of the bubbles and the ‘pseudo-turbulence’ of the liquid are shown in
Part 2 to be significantly affected by Nb.

2.1. One-field formulation of the Navier–Stokes equations

The fluids inside and outside the bubbles are taken to be Newtonian and the flow
is taken to be incompressible and isothermal, so that densities and viscosities are
constant within each phase. The velocity field is solenoidal:

∇ · u = 0. (2.1)

A single Navier–Stokes equation with variable density ρ and viscosity µ is solved for
the entire computational domain Ω. The momentum equation in conservative form is

∂ρu

∂t
+ ∇ · ρuu = −∇P + (ρ− ρ0)g+ ∇ · µ(∇u+ ∇Tu) +

∫
σκ′n′δβ(x− x′) dA′, (2.2)

where u is the velocity, p the pressure, g the acceleration due to gravity, and σ
the constant surface tension. An additional body force defined by ρ0g, where ρ0 =
αρb + (1 − α)ρf is the mean density, is imposed on both fluids and ensures that the
net momentum flux through the boundaries of the domain ∂Ω is zero,

∫
∂Ω
ρu = 0.

This term is analogous to the pressure gradient generated by the base of a flow
container, which balances the total gravitational force on the fluid (Ladd 1997). In
its absence, gravity would cause the entire flow field to accelerate in the downward
vertical direction since all boundary conditions are periodic and there are no walls.
The last term in equation (2.2) accounts for surface tension at the front: κ′ is twice
the mean local curvature of the front, n′ is the unit vector normal to the front, and
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dA′ is the area element on the front; δβ(x − x′) is a three-dimensional δ-function
constructed by repeated multiplication of one-dimensional δ-functions, where x is
the point at which the equation is evaluated and x′ is a point on the front. This
delta function represents the discontinuity of the stresses across the interface, while
the integral over the front expresses the smoothness of the surface tension along the
interface. By integrating equations (2.1) and (2.2) over a small volume enclosing the
interface and making this volume shrink, it is possible to show that the velocities and
tangential stresses are continuous across the interface and that the usual statement
of normal stress discontinuity at the interface is recovered:

[−P + µ(∇u+ ∇Tu)]n = σκn, (2.3)

where the brackets denote the jump across the interface.

2.2. Finite difference/front tracking method

Equation (2.2) is discretized in space by centred finite differences on a uniform stag-
gered grid with nx, ny and nz grid points in each direction. A projection method plus
a predictor–corrector method are employed for discretization in time. The numerical
scheme is therefore second-order accurate in space and in time.

The two major challenges of simulating interfaces between different fluids are to
maintain a sharp front and to compute the surface tension accurately. In this paper,
we use a front tracking method originally developed by Unverdi & Tryggvason (1992)
and improved by Esmaeeli & Tryggvason (1998). The main features of the method
are presented briefly here; a complete description is available in Tryggvason et al.
(2001). In addition to the three-dimensional fixed grid on which the Navier–Stokes
equation is solved, a moving, deformable two-dimensional mesh is used to track the
boundary between the bubble and the ambient fluid. This mesh consists of marker
points connected by triangular elements.

The advection of the density on the fixed grid between time steps n and n + 1 is
accomplished by first moving the front and then constructing a grid-density field to
match the location of the front. The velocity of each front marker point is interpolated
from the fluid velocities at the four grid nodes surrounding the front point in each
direction using the weighting functions proposed by Peskin (1977). After all points
have been advected, a discrete version of the density gradient across each front
element, written symbolically as ∇hρ = (ρb − ρf) ∫ δhn dA′, is calculated on the front
and distributed onto the grid; δh is a discrete delta function and is defined on a
compact support of 43 grid points with the same weighting functions suggested by
Peskin. A smooth density field is then obtained by solving the following Poisson
equation:

∇2
hρ = ∇h · ∇hρ. (2.4)

Instead of a sharply discontinuous density field, the density jump from ρb to ρf
is smoothed over an interval of about 4 grid points in each spatial direction. The
viscosity field is derived by affine scaling from the density field.

Because it is necessary to simulate the motion of the bubbles over long periods
of time in order to obtain statistical steady-state results, an accurate and robust
technique for the calculation of the surface tension is critical. This is achieved by
converting the surface integral of the curvature over the area of a triangular element
∆S into a contour integral over the edges ∂∆S of this element. The local surface
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tension ∆F e on this element is then:

∆F e = σ

∫
∆S

κn dA = σ

∫
∂∆S

t ×m dl, (2.5)

where n is the unit vector normal to the element surface, and t and m are the unit
vectors in the plane tangent to the element, which are respectively tangent and normal
to the edges of the element. Vectors t and m are found by fitting a paraboloid surface
through the three vertices of the triangle ∆S and the three other vertices of the three
adjacent elements. To ensure that t and m on the common edge of two neighbouring
elements are identical, they are replaced by their averages. As a consequence, the
integral of the surface tension over each bubble remains zero throughout its motion.
Even small errors in the evaluation of the surface tension can result in a net force
that might, for example, cause a single bubble in an unbounded domain to migrate in
the lateral direction. The final step is to distribute the surface tension onto the fixed
grid in the same manner as the density gradient.

As a bubble moves, front points and elements accumulate at the rear of the bubble,
while depletion occurs at the top of the bubble. It is therefore necessary to add and
delete points and elements in order to maintain adequate local resolution on the front.
The criteria for adding and deleting points and elements are based on the length of
the edges of the elements and on the magnitude of the angles of the elements; more
details of the restructuring algorithm are given in Tryggvason et al. (2001). Typically
about 1% of the points and elements are added or deleted at each time step.

Although it is possible to allow two bubbles to coalesce when they come close
to each other (see Nobari, Jan & Tryggvason 1996, for an example of colliding
drops), this is not done in this paper. There are two reasons for this. First of all,
we are interested in the average properties of the steady state and it is undesirable
if the number and size of the bubbles changed as the simulation progressed. The
second reason is that we believe that it is difficult, at the present time, to implement
coalescence into the code in a physical way. Actual coalescence should not take
place until the film between the bubbles is much smaller than the smallest resolved
distance. In simulations using marker functions to follow the phase boundary, such as
volume-of-fluid or level-set methods, the bubbles fuse together as soon as the distance
between them is smaller than a grid space. This makes the coalescence dependent on
the resolution and is clearly undesirable. The present computations lead to essentially
fully converged results, even if the film between the bubbles is not fully resolved,
since the flow in the film is a simple plug flow (Qian 1997). At the lowest volume
fraction for spherical bubbles, collisions between the bubbles are relatively rare, so
our assumption should be a good approximation of reality.

In summary, the sequence of operations performed to move the flow field from time
step n to time step n+1 is as follows. First the front is advected using the velocity field
at n. From the new position of the front at n+ 1, the density and viscosity fields are
reconstructed and the surface tension is calculated on the front and transferred to the
fixed grid. The convective, viscous, and gravitational terms are calculated using the
density, viscosity and velocity fields at time step n and added to the surface tension
to give an unprojected velocity field u?. Combining equations (2.1) and (2.2) results
in a non-separable elliptic equation for the pressure:

∇ 1

ρn+1
· ∇P =

1

∆t
∇ · u?. (2.6)

This equation ensures that the velocity field at time n+ 1, un+1, which is derived from
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P and u?, is solenoidal. The operations described above represent the first step of the
predictor–corrector method. They are repeated and the results are averaged with the
values at time step n to yield the velocity field and front position at time step n+ 1.

The front-tracking method does not explicitly conserve the volume of the bubbles.
The following technique was developed to ensure that the volume of the bubbles
remains constant. The volume error ∆Volb is calculated at every time step for each
bubble. If it exceeds a small threshold, typically 0.1% of the original volume, the
coordinates of the front points on the bubble are adjusted according to

OM ′ = OM − ∆Volb
OM · n

4π‖OM‖3
n. (2.7)

Here O is the centroid of the bubble, n is the unit vector normal to the front pointing
out of the bubble, and M and M ′ are the positions of a front point before and after
correction. This correction algorithm amounts to adding a potential sink of volume
at the centroid of the bubble and is typically applied every 100 time steps. A similar
technique is used by Zhou & Pozrikidis (1993) to compensate for volume changes in
a boundary integral method.

The numerical method was parallelized for distributed-memory parallel computers
and a parallel multigrid solver was developed to accelerate the solution of the Poisson
equations for the density, equation (2.4), and the pressure, equation (2.6). More details
of the parallelization are available in Bunner & Tryggvason (1999) and Bunner (2000).

2.3. Definition of the bubble velocities, fluctuation velocities and fluid turbulence
quantities

The velocity field v = (u, v, w) is defined as vb = (ub, vb, wb) in the bubbly phase and
vf = (uf, vf, wf) in the liquid phase. The volume-averaged velocities of the bubbly
phase and of the liquid phase are V b = 〈vb〉 = (Ub, Vb,Wb) and V f = 〈vb〉 =
(Uf, Vf,Wf). The relative or slip velocity between the two phases is V r = V b − V f .

Since the surface of the bubble is tracked explicitly, it is advantageous to use
the marker points to calculate the location and velocity of the bubbles. The volume
integrals are transformed into surface integrals using the divergence theorem. The
volume Vol(l)b and centroid position r(l)

b of bubble l are

Vol
(l)
b =

∫
Vol

(l)
b

dV =
1

3

∫
Vol

(l)
b

∇ · r dV =
1

3

∮
S

(l)
b

r · n ds, (2.8)

r(l)
b =

1

Vol
(l)
b

∫
Vol

(l)
b

r dV =
1

2Vol(l)b

∫
Vol

(l)
b

∇(r · r) dV =
1

2Vol(l)b

∮
S

(l)
b

(r · r)n ds. (2.9)

The velocity of the centroid of bubble l can be obtained in the same way:

V (l)
b =

1

Vol
(l)
b

∫
Vol

(l)
b

v dV =
1

Vol
(l)
b

∫
Vol

(l)
b

∇ · (rv) dV =
1

Vol
(l)
b

∮
S

(l)
b

r(v · n) ds, (2.10)

or by differentiating the path of the centroid

V (l)
b =

dr(l)
b

dt
. (2.11)

It has been verified numerically that these two formulae give identical results. The
latter formula is used in this paper.

In order to be compatible with the formulation introduced by Ishii, Chawla &
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Zuber (1976) for drift-flux models, the rise velocities are presented as drift velocities.
The drift velocity of bubble l, V (l)

d , is defined as the volume-averaged velocity of the

bubble, V (l)
b , minus the volume-averaged velocity of the whole mixture, αV b+(1−α)V f .

The average drift velocity is therefore simply

V d = (1− α)V r. (2.12)

The drift velocity and the relative velocity are approximately equal in dilute flows.
Note that the ρ0g term in the Navier–Stokes equation, equation (2.2), imposes that
the mass-averaged velocity, V m = (αρbV b + (1− α)ρfV f)/(αρb + (1− α)ρf), is zero at
all times.

Two-phase models of bubbly flows generally employ ensemble-averaging to define
average quantities (Delhaye 1974; Ishii 1975; Drew 1983). Because of the computa-
tional cost of our simulations, it was not possible to do several runs with different
initial configurations for each set of the governing parameters. Instead, the ensemble
averages are replaced with space and time averages. In this paper, the velocity is
averaged first over all bubbles,

V b(t) =
1

Nb

Nb∑
l=1

V (l)
b (t), (2.13)

and then over time to obtain the mean component of the bubble velocity:

V b =
1

T

∫
T

V b(t) dt. (2.14)

The fluctuating component of the bubble velocity is defined as follows. The instan-
taneous bubble velocity variance, sometimes called suspension temperature (Nott &
Brady 1994; Spelt & Sangani 1998), is calculated with respect to the instantaneous
average bubble velocity V b(t). The fluctuation velocity at each instant is the square
root of the variance:

V ′bi(t) =

√
1

Nb

∑
l=1,Nb

(V (l)
bi

(t)− Vbi(t))2
, (2.15)

where i = 1, 2, 3. Note that V ′bi is defined with respect to the rise velocity or relative
velocity, and not the drift velocity. The mean fluctuation velocity is defined as the
square root of the average variance over time:

V ′bi =

√
1

T

∫
T

V ′bi(t)
2 dt. (2.16)

An alternative procedure is to define the fluctuations with respect to the time-
averaged velocity:

V ′bi =

√
1

Nb

∑
l=1,Nb

1

T

∫
T

(V (l)
bi

(t)− Vbi)2
dt. (2.17)

The first averaging procedure is used here because it is a better measure of the
relative motion of the bubbles than the second one. Consider a situation where all
bubbles move together for a short period of time without motion relative to each
other. Their fluctuation velocity in this period of time is zero if equations (2.15)
is used, but non-zero if equation (2.17) is used. Nott & Brady (1994) made the
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same choice in the definition of the variance of a suspension of solid particles in a
pressure-driven flow. Esmaeeli & Tryggvason (1996) conducted several simulations
of two-dimensional bubbly flows using the same governing parameters but different
initial bubble distributions. After the initial transient, all systems reached the same
statistical steady state. We checked that using equations (2.15) and (2.16) rather than
equation (2.17) leads to a relative difference of less than 1% in all our simulations
with 27 or more bubbles and equal to about 3% for the simulations with 12 or 13
bubbles. For even smaller systems, the error is larger, but the small size of these
systems precludes any accurate estimation of the variance anyway.

The fluctuation velocities of the bubbles are different from the Reynolds stress of
the fluid inside the bubbles. While the fluctuation velocities of the bubbles have a
strong influence on the motion of the continuous phase, recirculation of the fluid
inside the bubbles is of much smaller importance since the density of the bubbles is
small.

The bubble velocities are presented as Reynolds numbers and are normalized by
the diameter d of the bubbles and the viscosity µf and density ρf of the outer fluid.
The Weber number is defined as We = ρfW

2
b d/σ. The lengths are normalized by

the bubble diameter d. Similarly, the turbulence properties of the liquid phase are
normalized by d and g. These quantities are also estimated by spatial and temporal
averaging. For example, the spatial average of the Reynolds stress is defined as

〈u′iu′j〉(t) =
1

Ωf

∫
Ωf

u′iu
′
j dV , (2.18)

where Ωf is the volume occupied by the liquid in the periodic cell and u′i is the
fluctuating component of the liquid velocity. The mean or time-averaged Reynolds
stress is

〈u′iu′j〉 =
1

T

∫
T

〈u′iu′j〉(t) dt. (2.19)

2.4. Resolution tests

A number of validation tests of the method are reported in Tryggvason et al. (2001),
Esmaeeli & Tryggvason (1998), and Jan (1994). For example, Jan (1994) implemented
the method in axisymmetric coordinates and compared the results for the rise of a
single bubble at Re = 20 and We = 12 with those of Ryskin & Leal (1984). Using a
large domain and about 25 grid points per bubble radius, Jan (1994) found that the
difference in the steady-state rise velocities was less than 1%, and that the bubble
shape, streamlines and recirculation behind the bubble were almost identical.

Our goal is to study the motion and interaction of systems containing a number Nb

of bubbles. The results of Esmaeeli & Tryggvason (1999) and the results presented in
this paper indicate that the fluctuation velocity of the bubbles and the Reynolds stress
in the liquid phase depend strongly on Nb. It is therefore desirable to simulate systems
with large numbers of bubbles to obtain results that are independent of the size of
the periodic cell. However, the high cost of three-dimensional computations imposes
a limit on the resolution that can be used for each individual bubble. The resolution
requirements increase with Reynolds number and void fraction α and are expressed
in terms of the number of grid points per bubble diameter, nd. Resolutions between
20 and 25 grid points per bubble diameter were used in the present simulations,
depending on the void fraction. Three three-dimensional grid-independence studies
were conducted for α = 6%, 12% and 24% to show that these resolutions are adequate
for nearly spherical bubbles at Galileo number N = 900. In each case, the rise of
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α (%) nx nd Red k/gd (10−2)

6 22 10.7 26.18 4.261
42 20.4 30.38 4.669
80 38.9 31.74 4.749

12 18 11.0 19.64 4.253
34 20.8 22.82 4.775
68 41.6 23.45 4.875

24 24 18.5 14.12 4.093
32 24.7 15.24 4.446
64 49.3 15.91 4.666

Table 1. Resolution tests for one bubble in a regular array in a cubic domain. As the number of
grid points in the computational domain, nx = ny = nz , is increased, the number of grid points
per bubble diameter, nd, increases in proportion. Tests were performed for three resolutions for
each value of α: coarse, intermediate and fine. The results show that the relative error between the
intermediate and fine resolution is at most 4.4% for the steady-state drift Reynolds number of the
bubble, Red, and 4.7% for the steady-state turbulent kinetic energy of the liquid phase, k.

Red

30

20

10

0 5 10 15 20 25

38.9 points per diameter
20.4 points per diameter
10.7 points per diameter

(a)

0 5 10 15 20 25

(b)
0.05

0.04

0.03

0.02

0.01

k
dg

t√(g/d ) t√(g/d )

Figure 1. Resolution test for a regular array with Eo = 1, N = 900, α = 6%. (a) Drift velocity;
(b) turbulent kinetic energy in the continuous phase.

a single bubble in a periodic cell was simulated on three increasingly refined grids.
The rise velocity is shown in figure 1 for the α = 6% case. After an initial transient,
the motion of the bubble quickly settles to a steady-state value, which increases
monotonically with resolution. The relative difference in the average rise velocity
between nd = 20.4 and nd = 38.9 is 4.3% and the difference in the relaxation time,
τ =

∫ ∞
0

(1−Wd(t)/Wd) dt is 3.3%. The steady-state values of the rise velocity and the
continuous-phase turbulent kinetic energy are reported in table 1. For both quantities
and all values of void fraction, the relative error between the intermediate and high
resolution cases is less than 4.5%. The simulations reported in the results section use
resolutions corresponding to the intermediate case. Because of its prohibitive cost, no
resolution study was done for α = 2%, but the trend shown in the tests at higher
values of α suggests that the value of nd used in the results section, nd = 21.6, leads
to errors that are smaller than the errors at α = 6%.

These three-dimensional simulations showed that the differences between resolu-
tions of about 20 and about 40 points per diameter are small. Since it is practically
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nx nd Red k/gd

64 19.5 25.27 0.681
128 39.1 26.30 0.670
256 78.1 26.34 0.668

Table 2. Resolution test for one bubble in a regular array in a two-dimensional square domain
with resolution nx = ny and nd grid points per bubble diameter. The data show that a resolution
of nd ≈ 40 provides grid-independent values of the steady-state drift Reynolds number Red and
steady-state turbulent kinetic energy k. Note that k in two dimensions is one order of magnitude
larger than k in three dimensions.

nx nd Red Re′b k/gd

128 19.5 13.65 10.063 1.192
256 39.1 14.32 10.166 1.123

Table 3. Resolution test for a free array with nine bubbles in a two-dimensional square domain
with resolution nx = ny and nd grid points per bubble diameter.

impossible to increase resolution further in three dimensions, a grid-independence
study was conducted in two dimensions with resolutions of about 20, 40 and 80
points per diameter. Although the resolution requirements in two and three di-
mensions are not exactly identical, this study gives us additional confidence that
the numerical resolutions used in the three-dimensional simulations reported in the
paper are adequate. The two-dimensional code uses the same method as the three-
dimensional code. The rise of a single bubble in a periodic domain was simulated at
N = 900, Eo = 0.28, and α = 7.4%. Because two-dimensional bubbles deform more
than their three-dimensional counterparts, a lower value of the Eötvös number was
selected so that the bubble remains approximately cylindrical. The results in table 2
show that a resolution of about 40 points per bubble diameter provides a solution
that is grid independent.

In addition to the rise velocity of the bubbles and the turbulence properties of
the liquid phase, we are interested in determining the fluctuations of the bubble
motion and must therefore verify that the interaction of multiple bubbles is correctly
accounted for by the numerical method. We performed another two-dimensional grid
independence study with nine bubbles at N = 900, Eo = 0.28, and α = 16.5%, again
as a substitute for a much more expensive three-dimensional study. The simulations
were conducted over a long period of time so that the time averages are well defined.
In addition to the average drift velocity and the turbulent kinetic energy in the
liquid phase, the total fluctuation Reynolds number, defined as the square root of

the variance of the bubble velocities, Re′b = (Re′2bx + Re′2by )
1/2

, is reported in table 3.
The relative differences of the values on the two grids are respectively 4.8%, 0.7%
and 5.8% for the drift velocity, fluctuation velocity, and turbulent kinetic energy.
Note that Re′b is of the same order of magnitude as Red, which is characteristic of
two-dimensional simulations of free arrays in this range of parameters, where the
interactions between bubbles are much stronger than in three dimensions (Esmaeeli
& Tryggvason 1999). These results indicate that the error in the velocity fluctuations
due to finite grid discretization will be small. Note, however, that the uncertainty due
to statistical variability may be large when the number of bubbles and the simulation
time are small, as shown in Part 2.
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2.5. Rise velocity of a single bubble

The rise velocity of a single bubble in an unbounded flow serves as a reference in the
limit when the void fraction tends to zero. Because the numerical code uses a uniform
grid and periodic boundary conditions, it is very expensive to calculate the motion
of a bubble in an unbounded flow. Instead, an approximate value of the rise velocity
is determined in this section from the numerical and experimental data available
in the literature. The drag coefficient is defined by CD = 8D/ 1

2
ρfWT

2πd2, where

D = 1
6
πd3(ρf−ρb)g is the drag and WT is the terminal velocity. CD is formally related

to the Eötvös, Morton and Galileo numbers by CD = 4Eo3/2/3Re2M1/2 = 4N/3Re2.
Although a considerable amount of literature exists on the rise velocity of a bubble
(Clift et al. 1978; Bhaga & Weber 1981; Ryskin & Leal 1984; Fan & Tschuyia 1990;
Duineveld 1995; Maxworthy et al. 1996; McLaughlin 1996), very little of it is relevant
to the situation of a contamination-free bubble that is slightly deformed with Eo = 1
and N = 900. Most experiments have been performed in water and are strongly
affected by surface-active agents, especially for small spherical bubbles.

Ryskin & Leal (1984) simulated the rise of a single bubble using a boundary-fitted
finite difference mesh. The data of figure 1 of their paper is interpolated to determine
Re. For We ≈ 1, they report CD ≈ 1.43 for Re = 20 and CD ≈ 0.71 for Re = 50.
By using a function of the form CD = (A/Re)(1 + (B/Re1/2)) and estimating the
error arising when reading the data from the figure, the rise Reynolds number is
Re = 36.0± 1.5. A second, less accurate method to evaluate Re is to use a correlation
for contaminated drops and bubbles (Clift et al. 1978, pp. 176–178) to find Re ≈ 25.5,
and to multiply this value by a correcting factor for a pure system. For Eo = 1, this
factor is approximately 1.35, so that Re ≈ 34.5.

More data are available for bubbles that are exactly spherical, but they also exhibit
a considerable degree of scatter. Interpolating Ryskin & Leal’s data at We = 0 gives
Re = 40.0 ± 1.5. A fit of numerical predictions of drag on spherical bubbles (Clift
et al. 1978, p. 130), CD = 14.9Re−0.78, gives Re = 36.5. Yuan & Prosperetti (1994)
simulated the rise of two bubbles in line by a method similar to Ryskin & Leal’s.
When the distance between the two bubbles is very large, the drag coefficient of the
leading bubble can be used to estimate the drag coefficient of a single bubble in an
unbounded flow, which results in Re = 38± 1.5.

A Galileo number N = 900 corresponds to an air bubble with a 0.452 mm diameter
in water. Katz & Meneveau (1996) measured the terminal velocity of air bubbles in
purified water. For 0.475 mm diameter bubbles, they obtained Re = 35. Duineveld
(1995) performed experiments in hyperdistilled water, but did not report results for
bubbles that are as small. For contamined bubbles, Clift et al. (1978, p. 172) give
Re ≈ 20.7 and Nguyen (1998) gives Re ≈ 21.8 (the properties of water are taken
at room temperature). As can be expected, this value agrees well with that obtained
for a rigid sphere using a correlation for the standard drag curve (Clift et al. 1978,
p. 112), which is Re = 21.4.

Since comparisons will be made with results from studies in the Stokes flow and
potential flow limits, the values obtained by using the drag laws in these limits are
also given here for completeness in the case of a spherical bubble at N = 900. In
Stokes flow, CD = 16/Re, which leads to Re = 75.0 for N = 900. In potential flow,
CD = 48/Re, so that Re = 25.0.

To summarize, the rise Reynolds number that is taken as a reference for the case
of a single bubble rising steadily in an unbounded flow with Eo = 1 and N = 900 is
that derived from Ryskin & Leal’s paper, Re = 36.0, corresponding to CD = 0.93. For
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a spherical bubble (Eo = 0) with N = 900, we take the average value of the three
results cited above, Re = 38.0. Even if the scatter of the different sources is accounted
for, it seems that the finite Eötvös number has a small but noticeable effect on the
rise velocity. Therefore, we expect the quantitative results presented in this paper to
differ slightly from these that would be found for bubbles that are exactly spherical.
This is discussed further below.

2.6. Effect of the surface tension

A 0.452 mm diameter air bubble in water has an Eötvös number of 0.0275 and is
spherical. Small values of Eo lead to large numerical errors in the discretization of the
surface tension, characterized by the appearance of spurious currents. This problem
is not unique to the front-tracking method, it appears also in the volume-of-fluid and
level-set methods (Lafaurie et al. 1994). A simulation with Eötvös number Eo = 0.1
and N = 900 was performed for a regular array with α = 6% on a 643 grid. The
results were compared with the corresponding results for Eo = 1 in order to assess
the effect of surface tension and finite deformation. At steady state, the ratios of the
lengths of the major axis and minor axis of the bubble is 1.08 for Eo = 1 and 1.006
for Eo = 0.1. The relative differences of the steady-state values of the rise velocity
and the turbulent kinetic energy of the liquid phase are 0.7% and 1.0% respectively.
These differences are sufficiently small that the results of this paper are expected to
be relevant to spherical bubbles. The case of more deformable bubbles is discussed in
Bunner & Tryggvason (2002b), where fundamental differences are observed between
Eo = 1 and Eo = 5.

2.7. Effect of the density and viscosity ratios

The ratios of the densities and viscosities of the bubbles and the suspending fluid are
typically very small in most bubbly flows of interest. For example, for air bubbles in
water at room temperature, ρb/ρf = 1.22× 10−3 and µb/µf = 1.81× 10−2. However,
the multigrid solver used here fails to converge in the solution of equation (2.6) for
the pressure if the density ratio is very small. An SOR solver is more robust, but
its use is impractical because it increases the computational time required to achieve
the same accuracy by one to two orders of magnitude. Similar problems of increased
computational cost are encountered in boundary integral methods when the viscosity
ratio is different from one (Pozrikidis 1993; Loewenberg & Hinch 1996). We elected
to increase ρb and µb, so that ρb/ρf = µb/µf = 1/50 in all simulations presented in
the results section. If the values of the density and the viscosity of the bubbles are
very small compared to the values of the surrounding fluid, the pressure and viscous
forces exerted by the gaseous medium inside the bubble on the interface are small.
Indeed, analytical solutions in the Stokes flow limit (Clift et al. 1978, p. 33) show that
if the viscosity of the bubble is one fiftieth the viscosity of the outer fluid, the rise
velocity is reduced by only 1.0% compared to the rise velocity of a bubble with zero
viscosity. Likewise, the added mass coefficient of a bubble whose density is one fiftieth
the density of the outer fluid is smaller than the added mass coefficient of a bubble
with zero density by 5.8% (Clift et al. 1978, p. 304). Numerical tests with our method
by Jan (1994) showed that ratios of 1/40 and 1/400 resulted in rise velocities that
differed by about 1.0%. The results of simulations with ρb/ρf = µb/µf = 1/50 should
therefore apply to situations where the density and viscosity ratios are much lower.
Oka & Ishii (1999) arrived at the same conclusion in their numerical simulations of
gas bubbles using the level-set method.
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α(%) Nb L/d nx nd Tf
√
g/d Ti

√
g/d zb/d zb/L nstep CPU procs

2 27 8.91 192 21.6 245 60 217 24.4 60720 80 8
3 13 6.10 128 21.0 126 35 109 17.8 25590 34 8
6 2 2.59 52 20.0 68 35 63 24.4 14510 — 1
6 4 3.27 64 19.6 57 35 48 14.6 11710 — 1
6 12 4.71 92 19.5 104 30 80 17.1 21250 50 4
6 27 6.18 128 20.7 257 30 183 28.7 58990 79 8
6 91 9.26 192 20.7 142 30 109 11.7 32430 54 8
6 216 12.35 256 20.7 142 30 109 8.8 32880 126 8

12 27 4.90 104 21.2 200 30 119 24.2 47710 78 8
12 54 6.18 128 20.7 111 40 74 12.0 29050 46 8
24 27 3.89 96 24.7 228 100 104 26.7 75030 88 8

Table 4. List of the free array simulations, the computational parameters, and the timings.
nx = ny = nz is the number of grid points in each spatial direction. nd is the number of grid
points per bubble diameter. Tf is the time at which the simulation was stopped. [Ti, Tf] is the
time interval on which the mean values are calculated; Ti is chosen in such a way that the initial
transients are avoided. zb is the average distance travelled by the bubbles in the vertical direction.
nstep is the number of time steps. CPU is the run time in days. procs is the number of processors.

3. Results
All simulations reported in this paper are for a triply periodic cubic cell with Eo = 1

and N = 900 (M = 1.2345× 10−6). Both regular and free arrays are considered.
Regular arrays correspond to the special case where there is only one bubble in the
periodic cell, so that all bubbles in the flow deform in the same way, move with
the same velocity, and have a fixed and constant distance from their neighbours.
Free arrays, with two or more bubbles per period, provide additional degrees of
freedom and a more realistic approximation to homogeneous flows by allowing for
relative motion between the bubbles. It is computationally less expensive to simulate
regular arrays than free arrays, and regular arrays are sometimes used as a first
approximation to homogeneous flows (Saffman 1973). However, it is known that
the results for regular arrays differ in many aspects from those for irregular arrays.
For example, in the sedimentation of solid particles in Stokes flows at low volume
fraction α, the sedimentation velocity in a random free array is Wd(α) = WT (1−6.55α),
where WT is the velocity of a single particle in an unbounded flow, whereas it is
Wd(α) = WT (1 − 1.76α1/3) for a regular array in a cubic lattice (Saffman 1973). Our
results show that the differences between free and regular arrays are strong at low
volume fraction and decrease when the volume fraction becomes large.

The effect of system size is studied by varying the number of bubbles Nb from 1 to
216. This is achieved by keeping all dimensional parameters constant and increasing
the size of the periodic cell. The effect of void fraction is studied for regular arrays
(Nb = 1) and α varying from 0.75% to 24% and for free arrays with Nb equal to 13,
27 and 54 and α varying from 2% to 24%. It is shown that a system with 12 bubbles
gives a good estimate of the average bubble velocity. However, it will be shown in
Part 2 that the bubble and liquid fluctuation velocities depend strongly on the system
size.

Table 4 contains a list of the simulations of free arrays, along with the main
computational parameters and timings of each simulation. The total CPU time is the
run time multiplied by the number of processors. Most of the simulations of free
arrays were performed on eight nodes of two IBM SP2 at the University of Michigan’s
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Figure 2. The 216 bubbles at t = 141.

Center for Parallel Computing and at the Maui High Performance Computing Center.
These computers have P2SC processors running at a clockspeed of 160 MHz and are
capable of a peak performance of 640 MFlops each. For the largest run, with 216
bubbles on a 2563 grid, the total memory requirement was 3.76 gigabytes. The
simulations with four bubbles or less were done on workstations and were not timed.

The initial location of the bubbles in the free arrays is determined in the following
manner. The bubbles are first arranged in a regular array, where the distances between
the centres of neighbouring bubbles are identical and equal to ∆x + d, ∆y + d, and
∆z + d in the x-, y- and z-directions respectively, where ∆x, ∆y and ∆z are the grid
steps in the three spatial directions and d is the bubble diameter. For each bubble,
∆x, ∆y and ∆z are then multiplied by three random numbers drawn from a uniform
distribution in the [−0.5, 0.5] interval, and the bubble is displaced by the resulting
amounts in the x-, y- and z-directions. The initial location of the bubbles can thus be
described as a perturbed regular array. We are interested in determining the average
motion of the bubbles and it will be shown that the average results beyond the
initial transient phase of the rise motion do not depend on the initial position of the
bubbles. While the exact manner in which the array is perturbed is not important, it
is critical that the array be somewhat perturbed. A two-dimensional calculation with
nine bubbles initially in a perfect regular array showed that the array breaks up due
to accumulation of small numerical roundoff errors, but only after the bubbles moved
by a distance of about 40 bubble diameters. The initialization procedure described
above could not be used for the simulations with 2, 4, 13 and 91 bubbles. Instead, we
determined the initial positions of the bubbles in an ad hoc fashion.

3.1. Flow visualization

Figure 2 shows the 216 bubbles at non-dimensional time t = 141. The boundaries of
the computational domain are marked by black lines. At this time, the bubbles have
risen by an average distance of 109 bubble diameters or 8.8 periodic boxes. Although
the bubbles form transient clusters, movies of the simulation results show that they
are on average distributed uniformly throughout the computational domain. The
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Figure 3. Position of the 27 bubbles at α = 6% at t = 14 and t = 43 and the paths of the
centroids of the bubbles.

trajectories of the 27 bubbles for α = 6% are plotted in figure 3 between t = 14 and
43. The 27 bubbles are initially located within one periodic box. As the bubbles rise
and disperse, they move into the neighbouring periodic boxes. The unsteadiness of
the flow is visible in the paths of the centroids of the bubbles. Since a single bubble in
an infinite domain at Eo = 1 and N = 900 rises steadily, this unsteadiness is clearly
due to the interaction of each bubble with its neighbours. The rise velocities of the
27 bubbles are plotted versus time in figure 4. This simulation was continued until
t = 257 (see table 4) but only the values until t = 100 are shown for clarity. The rise
velocities of the individual bubbles do not reach steady state values, in contrast to
the results of numerical simulations based on a potential flow approximation of the
bubbly flow by Smereka (1993) and Sangani & Didwania (1993). These authors find
that the individual rise velocities become constant and equal. This has not been seen
in experiments. We believe that the discrepancy between potential flow simulations
on one hand and experiments and finite Reynolds number simulations on the other
hand, can be explained by the different mechanisms driving the interaction of two
bubbles. This is discussed in § 3.3.

In figure 5, the 91 bubbles at α = 6% are shown at t = 63, along with the streamlines
in a vertical cross-section. The recirculation pattern around the equator of the bubbles
can be seen. The strong interaction between bubbles is also clearly visible. A detail
of figure 5 is shown in figure 6 and illustrates the fact that all scales of motion are
resolved.
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Figure 4. Drift velocity of the 27 bubbles at α = 6% until t = 100.
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Figure 5. Position of the 91 bubbles at t = 63 and streamlines (computed by finding the pathlines
at a fixed time) in a vertical cross-section.

Figure 6. Detail of figure 5.
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Figure 7. Average drift Reynolds number vs. time as a function of (a) system size for α = 6% and
(b) void fraction for Nb = 27.

3.2. Bubble rise velocity

The average drift Reynolds number of the bubbles, Red(t), is shown versus time in
figure 7(a) for the systems with Nb = 1, 12, 27, 91 and 216 bubbles at α = 6% and in
figure 7(b) for the systems with Nb = 27 and α = 2, 6, 12 and 24%. After the bubbles
are released, they undergo a short transient phase, where the bubble array retains its
initial configuration and the drift velocity curves overlap approximately, as seen in
figure 4. In this initial transient, the velocity of the free array approaches the steady
velocity of the regular array. For Nb = 12, Red(t) even exceeds the steady velocity
of the regular array because the regular array was not perturbed sufficiently in the
ad hoc initialization procedure. However, a regular array is an unstable configuration
and breaks up due to interactions between the bubbles. After the initial transient
peak, Red(t) reaches a well-defined statistical steady state, even though the individual
bubble velocities fluctuate throughout the simulation. The mean values in this steady
state are always lower for the free arrays than for the corresponding regular arrays.
Esmaeeli & Tryggvson (1999) suggested that this is due to increased deposition of
vorticity due to the unsteady bubble motion and the irregular bubble distribution.
This is consistent with the results of Koch & Ladd (1997), who found that irregularly
positioned, fixed, circular cylinders have a larger drag than a regular array of fixed
cylinders. In contrast, Esmaeeli & Tryggvason (1998) found that freely evolving arrays
at Re ∼ 1− 2 rise faster than regular arrays as predicted by theories based on Stokes
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Figure 8. Mean drift Reynolds number as a function of (a) Nb for α = 6% and 12% and (b) α
for the free arrays (Nb = 13 and 27) and the regular arrays (Nb = 1). The error bars indicate the
standard deviation of the data in the time interval over which it is averaged. ReT is the terminal
Reynolds number of a single bubble in an unbounded flow. Reb = 36(1− α0.3) provides a fit to the
simulation data for the free arrays.

flow. The horizontal velocities, not shown, fluctuate around zero. The fluctuations
about Red are high when Nb is small or α is high. The Nb = 27, α = 24% case exhibits
strong variations, which can be attributed to collective motion induced by the high
packing state of this system, as discussed in § 3.3.

The effect of system size on the rise velocity is shown in figure 8(a). Even very
small systems with two or four bubbles have markedly different rise velocities than
the regular array, suggesting that such systems capture the basic dynamics of bubble
interaction. However, it is necessary to simulate a larger number of bubbles to obtain
more accurate results. The value of Wd increases by only 2.4% between Nb = 12 and
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Nb = 216 so that the average drift velocity can be considered effectively independent
of Nb when Nb > 12. Since the initial configurations of the bubble arrays are different
in the simulations with Nb = 12, 27, 91 and 216 bubbles, this also indicates that the
initial positions of the bubbles have no influence on the average drift velocity past
the initial transient peak.

System size effects are important in simulations of sedimenting particles at low
Reynolds number due to the long range of particle–particle interactions. For example,
in the Stokes flow simulations of Ladd (1993), a difference of 5–10% can be seen in
the sedimentation velocity when 32 and 108 particles are used at a volume fraction of
5%. At high Reynolds numbers, the velocity disturbance induced by a bubble decays
much faster with distance away from the bubble than in Stokes flow. Sangani, Zhang
& Prosperetti (1991) report that the average bubble velocity in their potential flow
simulations changes very little for 8, 16, and 32 bubbles.

The ability to predict the dependence of the average velocity on the volume
fraction is of fundamental importance in the study of dispersed multiphase flows.
A brief summary of existing results for bubbles follows. van Wijngaarden (1993)
determined the rise velocity of equisized spherical bubbles in dilute conditions in the
case where the Reynolds number is sufficiently high that the flow can be assumed
to be potential, yet the Weber number is sufficiently small that the bubbles remain
spherical. From an analysis of the relative motion of a pair of bubbles, he found that
the most likely orientation of the separation vector between the two bubbles is in a
plane perpendicular to gravity and derived the pair probability distribution function
in this plane. Using this probability density, he calculated the average rise velocity to
the leading order:

Wd(α) = WT (1− 1.56α). (3.1)

For comparison, he also determined the mean rise velocity by assuming that the
bubbles are randomly distributed in space and randomly distributed in a horizontal
plane and found, respectively,

Wd(α) = WT (1− 2α) (3.2)

and

Wd(α) = WT (1− 1.25α). (3.3)

The effect of the microstructure on the average rise velocity is clear. Experimental
confirmation of the linear dependence of Wd on α in the high Reynolds number
regime, Re > 200, was made for air bubbles in purified water by van Wijngaarden &
Kapteyn (1990), who found

Wd(α) = V (1− 1.78α), (3.4)

but only for 0.02 < α < 0.15. Between α = 0 and 2%, Wd(α) falls nonlinearly, V being
20% lower than the terminal rise velocity WT . A similar sharp drop between Wd(0)
and Wd(α > 0) was observed by Zenit, Koch & Sangani (2001) in their experiments
on slightly deformed bubbles at Reynolds number about 300. For α > 0, they found:

Wd(α) ∝ (1− α)2.8. (3.5)

For the general case of particulate flows at a wide range of Reynolds numbers and
deformations, Ishii & Zuber (1979) assumed a similarity criterion between the drag
law of a single particle and the drag law of a multi-particle system and used a vast
number of experimental data to determine Wd(α). For bubbles, they distinguish four
regimes as the Reynolds number increases: Stokes regime, viscous regime, distorted
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particle regime, and churn turbulent regime. The high Reynolds number experimental
results of van Wijngaarden & Kapteyn (1990) fall into the distorted particle regime,
for which Ishii & Zuber (1979) propose

Wd(α) = WT (1− α)1.75, (3.6)

which agrees well with equation (3.4) when α is small, and also with the formula
given in Hetsroni (1982, pp. 2–87). Our results are for lower Reynolds number and
fall into the viscous regime, where a more complicated formula applies. However, in
the range of void fraction considered here, the Ishii & Zuber (1979) correlation can
be approximated by

Wd(α) ≈WT (1− α)3.0. (3.7)

These correlations, equations (3.6) and (3.7), are derived by scaling and validated
with experimental data where surface contamination plays an important role. Their
direct applicability to the current results is therefore questionable, but they will serve
as useful reference points. In particular, linear and power-law fits will be attempted
and comparisons made with the formulae presented above.

The mean drift velocity computed from our results is shown versus α in figure 8(b);
α ranges from 0.75% to 24% for the regular arrays and from 2% to 24% for the free
arrays. The regular array results are discussed at the end of the section. Due to the
high cost of simulating a system with a large number of bubbles at very small void
fractions with our code, the lowest void fraction reported here for a free array is 2%,
for which Red = 26.6. Nevertheless, as α approaches zero, Red(α) must tend towards
the terminal velocity of a single bubble in an unbounded flow determined in § 2.5,
ReT = 36.0, implying a sharp decrease in the rise velocity from α = 0 to α = 2%.
Unlike the analytical results of van Wijngaarden (1993) and the experimental results
of van Wijngaarden & Kapteyn (1990), which are both for much higher Reynolds
numbers, Red(α) is not a linear function of α, but is slightly convex. However, if we
fit lines between α = 2% and 6% on one hand and between α = 2% and 24% on the
other hand, the slopes are in both cases higher than the slopes of equations (3.1) to
(3.4), but consistent with a linearization of equation (3.7) at small α. The projections
of these fits on α = 0 give Red = 28.4 ± 0.7 in both cases, which is about 25%
lower than ReT . The fact that Red < ReT and the magnitude of the difference are
in agreement with the experimental results of van Wijngaarden & Kapteyn (1990)
and Zenit et al. (2001). Zenit et al. (2001) attribute the sharp decrease of the mean
bubble velocity at low void fractions to the collisions of the bubbles with the walls of
their experimental channel. The absence of walls in our simulations shows that this
factor is probably not the main reason. We believe that this nonlinear decrease is due
to the change in microstructure. For α = 0, the bubbles are distributed randomly in
space and do not interact with their neighbours. For α = 2%, bubbles tend to align
themselves horizontally relative to their neighbors, as shown in § 3.3. This change in
the microstructure results in a higher drag coefficient and therefore lower rise velocity
than for bubbles at α = 0. A power law of the form of equations (3.6) and (3.7) does
not provide a good fit to the computed values of Wd(α) and WT , but a good fit is
given by:

Red = 36.0(1− α0.3). (3.8)

This expression is robust to small variations in ReT in the simulations results, with
only small changes in the exponent. It is emphasized that there is no theoretical
justification for this formula.

The velocity of the regular array is greater than that of the free array for all values
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of void fraction reported here. This can also be attributed to the difference in the
microstructure. The regular array contains an equal number of bubble pairs aligned
horizontally and vertically, whereas the free array contains a larger number of bubble
pairs that are aligned horizontally. Since the drag of a horizontally aligned bubble
pair is larger than the drag of a vertically aligned bubble pair, where the wake of
the leading bubble shields the trailing bubble from the oncoming flow, the bubbles
rise faster in the regular array than in the free array. At low void fractions, the drift
Reynolds number in the regular arrays is higher than ReT . Therefore Red(α) actually
increases with α for values of α between 0 and 0.75%. The following explanation is
suggested for this behavior. As mentioned previously, a bubble trailing in the wake
of another bubble experiences a lower drag than an isolated bubble. In a regular
array, every bubble is located in the wake of an infinite number of bubbles (its
periodic images). At low void fractions, this tends to reduce the drag of the bubble
and increase its rise velocity to a value larger than WT . At high void fraction, the
flow blockage due to the presence of the surrounding bubbles starts dominating over
this drag reduction mechanism, so that Red eventually becomes smaller than ReT .

3.3. Microstructure

The discussion and results above have made clear the importance of understanding the
spatial distribution of the bubbles and the fundamental mechanisms which determine
the interactions between them. Approximate knowledge of the microstructure or
an assumption about the microstructure is necessary to determine the rise velocity
analytically (van Wijngaarden 1993). Moreover, Smereka (1993) pointed out that a
wrong assumption about the microstructure can lead to ill-posed models. A summary
of previous studies regarding the bubble distribution is given here, starting with the
interaction of two side-by-side bubbles and two in-line bubbles, moving on to multi-
bubble systems in the potential flow approximation, and finishing with work at finite
Reynolds numbers.

Two spheres in steady potential flow attract when they move perpendicularly to
their line of centres and repel when they move in the direction parallel to their line of
centres (Lamb 1932). Legendre & Magnaudet (1998) considered the motion of two
spherical bubbles whose line of centres is perpendicular to the direction of motion
and which are separated by a fixed distance r = sa, where a is the radius of the
bubbles. In the potential flow limit, they report that the rise velocity is lower than
the terminal velocity of an isolated bubble and that the bubbles are always attracted
towards each other. The reason for this attractive force is that the pressure in the
gap between the bubbles is lower than the ambient pressure. In the opposite limit of
very viscous flows where the Oseen approximation is valid and small inertia effects
are present, they report that the bubbles always repel and that the rise velocity is
lower than the terminal velocity at short separation distances and higher at large
separation distances. In the absence of inertia, the lift force is zero and the bubbles
do not experience relative motion unless acted upon by a third bubble. Legendre &
Magnaudet (1998) computed the motion of two side by side bubbles at 0.1 6 Re 6 500
by solving the Navier–Stokes equations and confirmed the validity of the expressions
derived from the Oseen approximation at low Re. They found that the lift force
changes sign at 2.5 6 Re 6 25 for separation distances 3 6 s 6 10. However, they
were unable to recover the predictions of potential flow theory, even at Re as large as
500 and attributed the discrepancy to vorticity generated at the surface of the bubble.

Harper (1970) analysed the rise of two bubbles in line at a fixed separation distance
under the assumption of potential flow but with the inclusion of a thin wake between
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the bubbles. He determined that the irrotational interaction results in an O(s−4)
repulsive force due to the pressure being higher in the gap between the bubbles
than in the ambient flow, while the wake effect tends to move the bubbles towards
each other, so that there exists an equilibrium distance at which the hydrodynamic
forces balance. This equilibrium distance is stable to vertical displacements, but a
vertical line of two bubbles is unstable to lateral displacements. Yuan & Prosperetti
(1994) computed the in-line motion of two spherical bubbles at Re up to 200 by
solving the unsteady Navier–Stokes equations. Their results agree qualitatively with
Harper’s (1970) theory, in particular in the existence of an equilibrium distance, but
the values of the drag differ considerably, even for Re = 200. They also show that
the transport and diffusion of vorticity affect the interaction between the bubbles
very strongly. Katz & Meneveau (1996) conducted experiments of nearly spherical
in-line air bubbles in purified water for 0.2 6 Re 6 140. Contrary to the results of
Harper’s (1970) first-order boundary layer theory and Yuan & Prosperetti’s (1994)
Navier–Stokes simulations, they observe that the bubbles always collide and coalesce,
indicating that the adverse pressure gradient is not strong enough to overcome the
wake effect. Katz & Meneveau (1996) and Yuan & Prosperetti (1994) suggest that
the discrepancy between the experimental and numerical results is due to bubble
deformation.

The unsteady motion of a pair of spherical bubbles was studied in the potential
flow approximation by Biesheuvel & van Wijngaarden (1982), Kok (1989), and van
Wijngaarden (1993). When the angle θ between the line joining the bubble centres
and the direction of gravity is smaller than 55◦ or larger than 125◦, the two bubbles
repel each other. When θ lies between these two values, they attract each other. The
simulations and experiments of Kok (1989) show that two bubbles always approach
each other along a line inclined at an angle close to π/2 and that they move towards
each other until they touch. At close encounter, the bubbles bounce in singly filtrated
water but coalesce in hyperfiltrated water. The first result was used by van Wijngaar-
den (1993), who assumed that the motion of a bubble pair is entirely in a horizontal
plane in order to determine the probability density function of finding two bubbles
at a given distance of each other and to calculate the average rise velocity of a dilute
suspension. van Wijngaarden (1993) also showed that the second result, i.e. that the
bubbles touch, leads to clustering of pairs when viscosity is present. He noted that,
while the formation of horizontal bubble clusters is observed in the transition from
bubbly flow to slug flow, clustering is not observed in experiments at volume concen-
trations well below this transition. He argued that clustering may be prevented by the
effect of multiple interactions and by turbulence. However, an attempt to calculate
the interaction of a third bubble with a bubble pair was inconclusive, suggesting
that multiple potential interactions are not able to compensate for the tendency to
cluster.

The motion of a large number of spherical bubbles in potential flow was studied
numerically by Sangani & Didwania (1993), Smereka (1993), and Yurkovetsky &
Brady (1996). Although the particular approaches differ, they share key features. The
viscous forces are included by using Levich’s expression for the drag, F = 12πµaV r ,
or by differentiation of the rate of viscous energy dissipation, F = 1

2
∇Ėd. It is assumed

that colliding bubbles bounce without coalescing and that the momentum and kinetic
energy of the system are conserved throughout the collision. The results of the three
studies are similar. In the absence of gravity and viscous forces, when the bubbles
are given initial velocities with mean in the vertical direction, they form horizontal
clusters if the variance of the velocity is small, but remain randomly distributed if
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the initial velocity distribution is sufficiently non-uniform. When gravity and viscous
forces are included, the bubbles always aggregate in horizontal clusters. Smereka
(1993) suggested that liquid turbulence may inhibit this clustering since it would
increase the variance of the bubble velocities. Sangani & Didwania (1993) recognized
that the assumption of an irrotational flow might be an oversimplification and that it
might be necessary to include vorticity in the model, possibly as an additional random
force on the bubbles. Zenit et al. (2001) found that some horizontal clustering occurs
in experiments with bubbles at Reynolds number about 300, but not to the extent
predicted by potential flow theory.

Fortes, Joseph & Lundgren (1987) examined the motion of solid spherical particles
fluidized in water at high Reynolds numbers. For two spheres initially aligned verti-
cally, they observed that the trailing particle is drafted into the wake of the leading
particle. After the two particles come into contact, they rotate around each other
and move away from each other while falling side by side. Fortes et al. (1987) called
this fundamental rearrangement mechanism ‘drafting, kissing, and tumbling’. They
also looked at a cross-stream alignment of spheres fluidized by a water stream and
noticed that the cross-stream array was a stable configuration. In fluidized beds with
much larger numbers of particles at volume concentrations between 10% and 28%,
they observed that these cross-stream arrays are an important feature of the flow,
along with the breaking down of falling streamwise particle pairs. Direct numerical
simulations of two sedimenting spheres by Feng, Hu & Joseph (1994) showed that
the drafting, kissing, and tumbling mechanism accounts well for the interaction of
particles at finite Reynolds numbers.

Cartellier & Rivière (2001) performed experiments with nearly spherical bubbles
at α < 1%. They found that bubbles at Re = O(1) are approximately uniformly dis-
tributed whereas bubbles at Re = O(10) exhibit a preference for horizontal alignment.
Esmaeeli & Tryggvason (1998, 1999) likewise found that the tendency for bubbles
to line up horizontally increases with Reynolds number. In addition, Cartellier &
Rivière (2001) examined the interaction of two bubbles, which are initially aligned
vertically, in the case where the bubbles are clean and in the case where the bubbles
are contamined. They found that contaminated bubbles experience drafting, kissing
and tumbling, but that clean bubbles rarely collide, instead smoothly rotating around
each other. Their results suggest that the discrepancy mentioned above between the
results of Katz & Meneveau (1996) and Yuan & Prosperetti (1994) might be due to
surface contamination rather than bubble deformation.

In order to understand the microstructure of bubble interactions, we examine the
pair probability distribution function, G(r, θ), which is defined as the probability that
the separation vector rij between the centroids of bubbles i and j has norm r and is
oriented at an angle θ with respect to the direction of gravity:

G(r, θ) =
Ω

Nb(Nb − 1)

〈∑
i=1,Nb

∑
j=1,Nb

i6=j

δ(r − rij)
〉
. (3.9)

Here Ω is the volume of the periodic cell. The configuration of bubbles i and j
is illustrated in figure 9. The radial pair distribution function, G(r), defined as the
integral of G(r, θ) over thin spherical shells of width ∆r and radius r, is shown in
figure 10. The results were obtained by averaging over at least 200 evenly spaced time
samples in the [Ti, Tf] time intervals. Nearly identical results were obtained when ∆r
and the number of time samples were divided or multiplied by two. The maximum
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Figure 9. Definition of the separation vector rij , distance r, and angle θ between bubbles i and j,
and of the unit vectors er and eθ .

values of r correspond to the size of the periodic box. Figure 10(b, c) shows G(r)
for α = 6% and Nb = 27, 91 and 216. If the bubbles were spherical, G(r) would be
zero for r < 2a. Since they are slightly deformable, G(r) > 0 for r > 1.8a, indicating
that collisions between bubbles do occur. G(r) has a peak at r ≈ 2.8a and G(r) → 1
as r is increased. At α = 12% and 24% (figure 10d, e), the profiles of G(r) are very
similar, but the peaks shift to r ≈ 2.6a and r ≈ 2.2a respectively, and the values below
r = 2a are slightly larger. In regular arrays at α = 6%, 12% and 24%, the closest
distances between the centroids of two bubbles are respectively 4.1a, 3.1a and 2.6a,
which are larger than the distances at the peaks. Therefore, the bubbles repel each
other, but not to the extent that they maximize their spacing. The more dilute case,
α = 2% (figure 10a), is qualitatively different in three aspects. First, G(r) = 0 for
r 6 2.5a, so it can be assumed that the bubbles do not come into contact in this case.
This assumption was verified by calculating the minimum distance between the front
points of two close bubbles (as opposed to the distance between their centroids) as
a function of time. This minimum distance was found to be about 0.5a. The second
important aspect is the absence of a peak at close distance. There is a maximum,
but it has lower magnitude than for α > 6% and is located at a distance r ≈ 7.0a,
which is larger than the spacing of the corresponding regular array, r = 5.9a. The
third aspect is the slow convergence of G(r) as r increases.

In the Stokes flow simulations of Ladd (1997), G(r) converges very slowly with r.
At a volume fraction of 10%, it only reaches a constant value around r ≈ 20a. This
is due to the long range of particle interactions in Stokes flow. In our simulations,
G(r) converges faster and always reaches unity at a separation distance well below
the size of the periodic box. This gives us confidence that the computational domain
is large enough in all cases for all bubble–bubble interactions to be accounted for to
a satisfying degree.

The angular pair distribution, G(θ), is shown in figure 11. G(θ) is calculated by
integrating G(r, θ) over an angular sector of radius r and width ∆θ. The result is
normalized so that

∫ π
0
G(θ) dθ = 1. For r of the order of the bubble diameter, G(θ)

accounts for the direct interaction of bubbles that are close. For larger values of r,
it is indicative of large-scale structure formation. Like G(r), G(θ) was determined by
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Figure 10. Radial pair distribution function for α = 2%, 6%, 12% and 24% and Nb = 27 for
r ∈ [0, L]. The results for Nb = 91 and 216 are superposed in (b) and (c) and the results for Nb = 54
are superposed in (d ).

averaging over at least 200 time samples. The [0, π] horizontal axis is discretized into
20 intervals. A sensitivity study showed that the results do not depend significantly on
the number of time samples or on the value of ∆θ, provided the number of samples
is large enough and ∆θ is not too small. If ∆θ is chosen too small, the limited system
size leads to noisy results. At small distances, all curves exhibit a peak at θ = π/2,
demonstrating a preference for pairs of bubbles to align themselves broadside to the
flow, which is consistent with the findings of all previous studies cited above. For a
given r, the value of G(π/2) decreases when the void fraction increases. For example,
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Figure 11. Angular pair distribution function for α = 2%, 6%, 12% and 24% and Nb = 27 and
different values of the separation distance r. The results for Nb = 216 and Nb = 54 are superposed
in (b) and (c) respectively.

for r = 2.5a, it is respectively 3.7, 2.1 and 1.5 for α = 6%(Nb = 27), 12%(Nb = 27),
and 24%. (No sample is available at this separation distance in the α = 2% case.)
In addition to the peak at θ = π/2, smaller peaks can be seen close to θ = 0 and
π for Nb = 216 at r = 2.5a, and for α = 2% at r = 8.0a. This is consistent with
previous studies, which show that the in-line configuration of bubbles is an equilibrium
configuration too, albeit an unstable one. G(θ)→ 1 when the computational domains
becomes large since the bubbles are nearly uniformly distributed at large distances.

Additional understanding of the dynamics of bubble interactions can be obtained
by looking at the relative velocity of bubble pairs. The polar coordinates of the
centroid P of bubble j in the frame of reference defined above and illustrated in
figure 9 are (r, θ), and the corresponding unit vectors are er = eρ sin θ + ez cos θ and
eθ = eρ cos θ − ez sin θ, where eρ = ex cosφ + ey sinφ. The relative velocity of the
bubble pair i, j is decomposed into its radial and tangential components along er
and eθ:Vr and Vθ . A simple quantitative description of the relative motion of bubble
pairs can be obtained by calculating the probability of Vr and Vθ being positive as
functions of θ. This is done for all bubble pairs separated by a distance less than r,
in the same manner as G(θ). In a uniformly distributed suspension, P (Vr > 0) = 0.5
and P (Vθ > 0) = 0.5.
P (Vr > 0) is shown versus θ for different values of r in figure 12. The general trend

is for bubble pairs to attract strongly (Vr < 0) when they are aligned vertically and to
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Figure 12. P (Vr > 0), the probability that the radial relative velocity between two bubbles is
positive, as a function of θ for α = 2%, 6%, 12% and 24% and Nb = 27 and different values of
the separation distance r. The results for Nb = 216 and Nb = 54 are superposed in (b) and (c)
respectively.

repel slightly (Vr > 0) when they are aligned horizontally. P (Vr > 0) tends towards 0.5
as r increases and the number of bubble pairs considered becomes larger. However,
a clear spatial correlation between the radial relative velocities remains visible for
Nb = 216 and r = 24a and for α = 2% and r = 12a.

Attraction for vertically aligned pairs is consistent with the Navier–Stokes simula-
tion results of Yuan & Prosperetti (1994), with the experimental results of Cartellier
& Rivière (2001), and with the drafting, kissing and tumbling mechanism of Fortes et
al. (1987). Yuan & Prosperetti (1994) determined the equilibrium distance betweeen
two bubbles in line as a function of the Reynolds number. For Re = 20, they found
r ≈ 2.6a, although they estimate this distance to be too small to be computed reliably
by their method. At larger distances, the bubbles attract due to the wake effect. This
is very clearly seen in the most dilute case, α = 2%, for r = 4a and θ close to 0 and π.
A computer animation of the bubble motion for α = 2% shows no clear occurrence
of bubbles being close enough that they are repelled. When two bubbles approach
vertically, the trailing bubble gradually slows down and the two bubbles tumble. For
higher void fractions, situations where two close bubbles are aligned vertically and
are separated by a distance less than the equilibrium distance occur more frequently.
This leads to larger values of P (Vr > 0) at θ close to 0 and π.

For α > 6%, the results show a weak preference for horizontally aligned bubbles
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to repel. This is consistent with the numerical simulation results of Legendre &
Magnaudet (1998) in the same range of Reynolds numbers. However, a small valley
is seen at θ = π/2 for α = 2%. We verified the existence of this valley for a number
of values of r < 8a. It indicates that bubble pairs that are aligned exactly horizontally
have a weak tendency to attract in this dilute case. This tendency is not seen in any
other simulation and P (Vr > 0) is greater than 0.5 for bubble pairs at an orientation
slightly greater or smaller than π/2.

These results are qualitatively different from the potential flow calculations of
Biesheuvel & van Wijngaarden (1984) and van Wijngaarden (1993). When the bound-
ary layer and the wake effects of the bubbles are neglected, bubbles tend to attract
for θ = π/2 and repel for θ = 0 and π regardless of the separation distance. Even
though potential flow theory correctly predicts that two bubbles align horizontally,
the underlying mechanism leading to the side-by-side configuration is fundamentally
different from that seen at finite Reynolds numbers. In potential flow, two bubbles
that are aligned vertically repel at first, while rotating around each other so that θ
tends towards π/2 (see van Wijngaarden 1993, for example), following which they
approach each other along a horizontal line until they touch. At finite Reynolds
number, the two bubbles approach along a vertical line, rotate around each other,
and repel when they are aligned horizontally, as shown also by Cartellier & Rivière
(2001). The difference between potential flow and finite Reynolds number results
shows that it is necessary to include the effects of vorticity in the calculation of the
motion of bubbles.
P (Vθ > 0) is plotted versus θ in figure 13 for the same values of r as P (Vr > 0).

The general trend is P (Vθ > 0) > 0.5 for θ < π/2 and P (Vθ > 0) < 0.5 for θ > π/2,
confirming that two vertically aligned bubbles tend to rotate around each other and
align themselves horizontally. The maximum of P (Vθ > 0) in [0, π/2] is usually not
at θ = 0 but at a slightly larger value. This is consistent with the observations made
earlier that two bubbles in an in-line configuration approach each other vertically
and that there exists an equilibrium position for two bubbles in line, even though this
equilibrium position is unstable to lateral displacements. P (Vθ > 0) tends towards 0.5
faster than P (Vr > 0) when r increases, indicating that the angular relative velocities
are less correlated than the radial relative velocities at large distances.

A common feature of most of the curves in figure 13 is that P (Vθ > 0) is slightly
lower than 0.5 in a small interval around θ ≈ π/3. This can be seen particularly clearly
at α = 2% for r = 4.0a and 5.0a. At α = 6% and 12%, this undershoot can also be
seen for r = 4.0a, but it is smaller. P (Vθ > 0) < 0.5 for θ close to π/2 means that two
bubbles whose line of centres is nearly horizontal but not exactly horizontal tend to
rotate around each other away from the horizontal axis. This is somewhat surprising
and contrary to the arguments made before. We attribute this phenomenon to the
effects of multiple bubble interactions. Consider for example bubble k, located above
bubble j in figure 9. The interaction of its wake with bubble j results in an upward
motion of bubble j with respect to bubble i and a departure from the horizontal
alignment for the bubble pair ij.

To verifiy the sensitivity of the results to the number of discretization intervals ∆r
and ∆θ, G(r), G(θ), P (Vr > 0), and P (Vθ > 0) are plotted in figure 14 for the worst
cases, which are Nb = 27, α = 24% for G(r) and Nb = 27, α = 2% for G(θ), P (Vr > 0),
and P (Vθ > 0). Differences can be noticed, particularly in G(θ) and P (Vr > 0) at
r = 4.0a when the number of ∆θ intervals is doubled, but they can be attributed to
the small number of samples due to the small system size.

Likewise, it can be seen that the effect of system size on the microstructure results
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Figure 13. P (Vθ > 0), the probability that the angular relative velocity between two bubbles is
positive, as a function of θ for α = 2%, 6%, 12% and 24% and Nb = 27 and different values of
the separation distance r. The results for Nb = 216 and Nb = 54 are superposed in (b) and (c)
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is small. Figures 10–13 include results for Nb = 27, 91 and 216 at α = 6% and for
Nb = 27 and 54 at α = 12%. The effect of system size is most clearly felt in P (Vr > 0),
particularly for θ close to 0 and π, and in the peak of G(θ) at θ = π/2, r = 2.5a, and
α = 6%, but it is otherwise small enough that it does not affect the results. The effect
of system size on the microstructure can be quantified by looking at two statistical
quantities. The first is the average of G(r, θ) over a spherical shell of radius r and
volume V and over time. The second is the average of G(r, θ) weighted by the second
Legendre polynomial, P 0

2 = 3 cos2 θ − 1 (Ladd 1997). Formally,

〈G〉 =
1

T

∫
T

1

V

∫
V

G(r, θ) dV , 〈A〉 =
1

T

∫
T

1

V

∫
V

G(r, θ)P 0
2 (cos θ) dV . (3.10)

If uniformly distributed point particles were considered, we would have 〈G〉 = 1 and
〈A〉 = 0. 〈A〉 = −0.5 is the limiting case where all bubble pairs are horizontal. Since
the bubbles in these simulations have finite size, 〈G〉 is smaller than 1.0 because of
excluded volume effects, but should tend towards 1.0 as r becomes large. 〈G〉 and 〈A〉
are shown in figure 15 for Nb = 12, 27, 91 and 216. 〈G〉 does not depend significantly
on Nb, while 〈A〉 increases slightly, indicating that the bubbles are more likely to be
aligned horizontally in small systems than in large systems, which is consistent with
the small increase in the rise velocity with Nb seen in figure 8(a).
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intervals ∆r and ∆θ.

The influence of the microstructure on the rise velocity is further illustrated in
figure 16, where the rise velocity of bubble pairs is plotted versus θ. The average rise
velocity is also shown by a horizontal solid line. The difference between the average
pair velocity and the average velocity, ∆W (θ), is positive for θ close to 0 and π and
negative for θ close to π/2, showing that bubble pairs that are aligned vertically rise
faster than the average while bubble pairs that are aligned horizontally rise slower.
∆W (θ) is not symmetric with respect to the Wd line. In particular for α = 2% and
6%, the absolute value of ∆W (0) = ∆W (π) is considerably larger than the absolute
value of ∆W (π/2), suggesting that the probability density function of the vertical
velocity is also asymmetric, as will indeed be seen in § 3.2 of Part 2.

Computer animations of the simulation results show that the different systems
exhibit qualitatively very different behaviors depending on the void fraction. In the
most dilute case, α = 2%, the bubbles interact infrequently with their neighbours so
that their trajectories are essentially straight, and interactions occur mostly between
pairs of bubbles. In addition, the bubbles rarely collide, which is consistent with the
findings of Cartellier & Rivière (2001) for clean bubbles. In contrast, in the densest
case, α = 24%, strong collective motions involving large numbers of bubbles are
observed. It is seen that horizontal rafts of bubbles separated by regions of liquid are
repeatedly being formed and broken. The horizontal rafts form through the suction
of bubbles located below the raft. They break up when one or more bubbles escape
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Figure 16. The average drift Reynolds number of two bubbles as a function of θ for α = 2%, 6%,
12% and 24% and for different values of the separation distance r. The horizontal solid lines mark
the average drift Reynolds numbers for Nb = 27, the horizontal dashdot lines mark the average
drift Reynolds number for (b) Nb = 216 and (c) Nb = 54. The average drift Reynolds numbers
have the same values as in figure 8.

the raft and entrain additional bubbles in their wakes. A sequence of plots of the 27
bubbles and eight periodic images is shown in figure 17. It illustrates the transition
from the layered state to the homogenously distributed state. The horizontal alignment
maximizes the drag since it offers the largest resistance to the flow. There is therefore
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(a) (b)

(c) (d )

Figure 17. The 27 bubbles at α = 24% and eight periodic images at times (a) 141.3, (b) 143.0,
(c) 144.7, and (d ) 151.9. The bubbles are shown in their frame of reference. The edges of the periodic
domain are marked by black lines and illustrate the average upward motion of the bubbles.

an excellent correlation between the times when the horizontal rafts exist and the
rise velocity is low in figure 7. Between t = 0 and t = 226, the process is repeated
11 times. The animation also reveals the presence of cross-stream arrays of bubbles
whose velocity is lower than the average velocity and which therefore fall relative to
the average bubble phase, and of vertical bubble pairs which accelerate relative to
the average bubble phase and undergo drafting, kissing, and tumbling. The overall
picture of the flow is very similar to that described by Fortes et al. (1987) from their
experiments with fluidized solid spheres at similar volume fractions but much higher
Reynolds numbers. The existence of falling cross-stream arrays and of rising pairs of
drafting bubbles is also seen for α = 12%, but the formation of horizontal layers is
not seen as clearly as for α = 24%.

Horizontal rafts were also observed in potential flow simulations (Sangani &
Didwania 1993; Smereka 1993; Yurkovetsky & Brady 1996). However, there are
fundamental differences between the horizontal rafts seen at finite Reynolds numbers
and in potential flow. The following discussion explains these differences and at
the same time summarizes the basic two-bubble mechanisms, which, according to
our interpretation of the results presented in this section, determine the interaction
of bubbles. In potential flow, two vertically aligned bubbles always repel and two
horizontally aligned bubbles always attract, regardless of their separation distance.
Therefore, the only equilibrium configuration is when the two bubbles are side by side
and touch, which results in the formation of permanent horizontal rafts. In contrast,
at finite Reynolds numbers, the interplay of viscous and inviscid effects leads to two
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equilibrium configurations, one vertical and unstable and the other horizontal and
stable. When the separation between two vertically aligned bubbles is large, they
attract each other due to the wake effect until they reach an equilibrium separation
distance, where the potential effect balances the wake effect. This separation distance
increases as Re increases (Yuan & Prosperetti 1994). For our value of Re, the
separation distance is approximately 2.6a, implying that vertically aligned bubbles
usually attract each other. However, the vertical alignment is unstable. If disturbed,
the two bubbles will rotate around each other and move to a horizontal alignment.
In the horizontal alignment, the two bubbles attract each other when they are far
from each other due to inviscid effects and repel each other when they are close due
to viscous effects (Legendre & Magnaudet 1998). The equilibrium separation distance
decreases when Re increases. The horizontal equilibrium is stable, which explains
the preference for bubble pairs to be aligned horizontally and, for α = 24%, the
formation of horizontal rafts. However, the horizontal rafts are only temporary. Due
to the attraction between vertically aligned bubbles, the rafts break up immediately
after they form.

4. Conclusion
The motion of buoyant bubbles in a homogeneous flow is studied by direct

numerical simulations, where the effects of viscosity, inertia, interface deformation,
and surface tension are all accounted for. The bubbles can deform but remain nearly
spherical for the parameters used here. The rise Reynolds number is 12–30, depending
on the void fraction, which varies between 2% and 24%. This part focuses on the rise
velocity and the microstructure of the bubbles; the dispersion process of the bubbles
and the turbulence of the liquid phase are examined in Part 2. The major observations
and conclusions are as follows:

(i) A good estimate of the mean drift velocity of the bubbles can be achieved with
only 12 bubbles. Likewise, the effect of system size on the microstructure is small
when Nb > 12.

(ii) As the void fraction α increases, the drift velocity of the bubbles decreases from
26.60 for α = 2% to 11.87 for α = 24%. In particular, there is a sharp drop between
the drift velocity at α = 0 and the drift velocity at α = 2%. A similar observation
is made in the experimental study of van Wijngaarden & Kapteyn (1990) at higher
Reynolds numbers.

(iii) An analysis of the microstructure reveals a preference for pairs of bubbles to
be aligned horizontally. This is consistent with potential flow theory. However, the
dynamics of bubble–bubble interactions are markedly different from potential flow
predictions. In our simulations, two bubbles that are aligned vertically attract each
other due to the wake effect, rotate around each other, and then repel when they are
aligned horizontally. This mechanism is similar to the ‘drafting, kissing, and tumbling’
mechanism of Fortes et al. (1987).

(iv) At α = 24%, we observe the periodic formation of horizontal rafts of bubbles
separated by liquid. These rafts are not stable and break up when one bubble leaves
the rafts and entrains other bubbles behind it. A similar phenomenon has been seen
in the sedimentation of spheres in fluidized beds at the same packing fraction (Fortes
et al. 1987).

(v) While simulations of regular arrays do not provide any information on the
microstructure, they can be used to determine rough estimates of the average rise
velocity of the bubbles at high void fractions.
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